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Recent studies of tibiofemoral kinematics in 6 degrees-of-freedom have given us a new

perspective and demonstrated lateral compartmental roll-back centered on a medially
oriented axis over a relatively stable medial compartment during functional arcs of sagittal
knee motion. This translates into coupled internal tibial rotation with increasing knee
flexion, which is altered by anterior cruciate ligament <ACU injury. During terminal exten­
sion, the tensioned ACL provides an internal torque to the lateral femoral condyle with

tightening of the lateral collateral ligament, culminating in the 'screw-home mechanism'.
Studies of tibiofemoral kinematics in the ACL-deficient knee have demonstrated posterior
and medial shifts of the femur relative to the tibia reference point. In addition, the
ACL-deficient knee also demonstrates different patterns of tibiofemoral kinematics during
gait. Current ACL-reconstruction techniques will restore some functions of the ACL;
however, some studies have suggested that anatomical ACL-reconstruction may better
restore normal tibiofemoral kinematics. Although in vitro studies have contributed much to
our knowledge of knee kinematics, increasingly accurate in vivo measurement techniques
now offer new insight on rotational stability. The methodologies of in vivo kinematics
include radiological techniques, video-based motion analysis, electromagnetic tracking
devices, and ultrasound-based systems. As management of knee pathologies continue to
evolve, development of reliable measures of rotational stability may be the next challenge
in clinical and functional outcome assessment.
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Evolving techniques of assessing in vivo tibiofemoral ki­nematics have contributed significantly to current con­
cepts in normal and pathological knee kinematics, challeng­

ing previous models extrapolated from 2-dimensional
sagittal knee motion. This article presents a review of the
literature on tibiofemoral kinematics in the healthy and ACL

deficient knee, with emphasis on rotational stability. It also
discusses techniques of in vivo knee kinematic measure­
ments as we move toward reconstruction of the ACL de­

signed to improve both translational and rotational stability.
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Tibiofemoral
Kinematics in
the Healthy Knee
Previous 2-dimensional analysis of sagittal knee motion has de­
scribed a curved, predictable pathway through flexion with an
instantaneous center of rotation through each flexion angle.1-4

Assuming the ACL and posterior cruciate ligament to be rigid
structures, the 4-bar linkage theory allows for sagittal knee mo­
tion to be described as a combination of gliding and rolling.5,6

Recent advances in both in vitro and in vivo techniques have
provided a new perspective on 3-dimensional knee kinematics
which can be described in 6 degrees of freedom (DOF). The
ability to analyze kinematics of the medial and lateral compart­
ment separately on magnetic resonance imaging (MRI) has led
to intercompartmental differential femoral roll-back to be inter­
preted as a longitudinal rotation coupled with tibiofemoral flex­
ion, thus introducing the concept of rotational knee stability and
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motion.7.8 This progressive tibial internal rotation and lateral
femoral roll-back during knee flexion has been described as a
helical knee motion9

The complex 3-dimensional tibiofemoral kinematics result

from the interaction between bony, soft tissue restraints and
the effect of muscular activation during weightbearing and
non weight bearing activities. In sagittal section, the medial
femoral condyle comprises the arcs of two circles articulating
on two angled 'flats' of the tibia.Io This contrasts with the

lateral femoral condyle, which is composed almost entirely of
a single, circular facet similar in radius and arc to the poste­
rior medial facet. lO

Tibiofemoral Kinematics

in 6 DOF in the Healthy Knee
From the arc of 20° to full extension, the articulating pos­
terior condyles shift to the larger radii of the anterior con­
dyles, lifting the posterior condyle away from the tibia. I]
In the last 10° of extension, there is tightening of the
capsular and ligamentous structures with "rocking" of the
medial condyle forward into contact between the anterior
extension facets of the tibia and femur. Laterally, the con­
tact point of the lateral condyle also shifts forward and
rotates down to contact the anterior tibial surface. 12More

importantly, the ACL which is already maximally ten­
sioned vertically at 10° flexion, exerts its tension in a hor­

izontal plane and puns the lateral femoral condyle inter­
nally.I3 This accounts for the "screw home mechanism" of

the knee first described by Hallen and Lindahl. 14
Throughout the functional range of flexion (20° to 110°),

the medial femoral condyle moves neither anteriorly nor pos­
teriorly in the unloaded cadaveric knee, the unloaded knee in

a living subject, or in a loaded knee in the living subject. lO,l5
This was postulated to be a result of the firmly attached
posterior horn of the medial meniscus, tightening of some
fibers of the superficial medial collateral ligament from 20° to
90°, and tension in the bulk of the posterior cruciate ligament
at 60° to 120°]6.]7 In contrast, the lateral femoral condyle
tended to move backwards together with the more mobile
lateral meniscus, thus resulting in external femoral rotation
with progressive flexion. ]0.15This pattern of motion was pre­
viously suggested when coupling of tibial internal rotation to
flexion was demonstrated in vitro with an electromagnetic
tracking system and confirmed on further MRI studies, where

the medial tibiofemoral contact point and flexion facet center
remained unchanged from 30° to 120° flexion whereas the

lateral moved backwards by approximately 15 mm.12·]8
Hence, the authors concluded that roll-back does occur in

the lateral compartment but not the medial, with the femur
rotating externally around a medial center. 12This axis has
been located by Hollister and coworkers to pass through the
tibial insertion of the ACL, whereas Matsumoto and cowork­

ers determined that it varies with flexion but largely remains
in the area between the 2 cruciate insertions on the tibia. 19,20

Interaction of bony geometry determines deep knee flex­
ion kinematics. Muscular action appears to have little effect
on tibial translation and rotation at high flexion angles21
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Nakagawa and coworkers and Li and coworkers reported a
sharp increase in tibial internal rotation occurring beyond
120° flexion2I.22 The change in convexity to concavity in
articular geometry beyond the posterior condyles and the
impingement of the shallower superior surface of the lateral
condyle on the lateral side of the knee results in this increased
tibial internal rotation22

Tibiofemoral Kinematics During Gait
Tibiofemoral motion during normal gait requires 0° to 60° of
sagittal flexion. At heel contact, the knee is flexed about 5°
and continues to flex up to 15 to 20° It then reaches nearly
full extension until heel off. At this point, the knee starts to
flex reaching 35° at toe off. The maximum knee flexion of 60°
occurs at the beginning of mid-swing phase for toe clearance.
During mid to terminal swing, the knee extends again before
heel contact23

Understanding normal rotation in the frontal and trans­
verse planes during gait is even more important due to the
goals of anatomical reconstruction in restoring preinjury tib­
iofemoral kinematics. Using intracortical pins, Lafortune and
coworkers measured secondary tibiofemoral motions during
gait24 The authors reported 1.2° valgus and 2°_3° external
rotations of the tibia at heel contact up to 5° valgus and 5°
internal rotation throughout the gait phase. Reinschmidt and
coworkers reported similar kinematic pattern throughout
gait with greater total range of motion of 5°-10° for both
abduction/adduction and internal/external rotations25

Tibiofemoral Kinematics
in the ACL-Deficient Patient
Tibiofemoral Kinematics
in 6 DOF in the ACL-Deficient Knee

Recent open MRI studies demonstrate medial and lateral
compartmental shifts in the tibiofemoral contact points with
ACL injury26-29 Compared with the contralateral healthy
knee, Scarvell and coworkers reported a I-mm posterior shift
in the medial compartment at 0° and 15° knee flexion and 1.5

mm posterior shift in the lateral compartment throughout
range of motion in the ACL-deficient knee26 Similarly, von
Eisenhart-Rothe and coworkers reported a 1.3-mm posterior
shift of the medial compartment in the ACL-deficient knee30
Logan and his colleagues conducted a study to assess tib­
iofemoral kinematics in ACL-reconstructed knees and re­
ported that the amount of excursion between the tibial and
femoral joint surfaces was similar; however, the lateral com­

partment was displaced 5 mm posteriorly throughout the
flexion arc of 0° to 90°28

Based on kinematic analysis of cadaveric ACL-deficient

knees, Mannel and coworkers reported that ACL disruption
led to greater than 10 mm of medial translation of the axis of
motion of the femur3] This is in agreement with previous
research that located the longitudinal axis of the normal knee
in the medial compartment whereas the axis of the pivot shift
was localized more medially at the medial collateral ligament
in ACL disruption.I9,20,32 However, to our knowledge, no
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Figure 1 Retrorenective Marker positions for point cluster
technique.

study has attempted to investigate the effect of ACL-recon­
struction in restoring the longitudinal axis of knee rotation.

Tibiofemoral Kinematics in

the ACL-Deficient Patient During Gait
Very few studies have attempted to accurately identify tib­
iofemoral kinematics of the ACL-deficient knee in 6 DOF

during gait. Previous gait analysis of ACL-deficient patients
demonstrated various adaptations in kinematics. The ACL­
deficient patients are further categorized into 2 groups: cop­
ers who can still participate in any type of sports without any
episode of giving way and noncopers who cannot do these.
Previous studies have reported that copers walked with sim­
ilar or increased knee flexion while noncopers walked with
decreased flexion and slower speeds33-35

Other studies investigated 6 DOF during gait and reported
that ACL-deficient patients walked with increased external
rotation and abduction of the tibia to compensate for the loss
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of ACL.36,37Conversely, Georgoulis and colleagues reported
increased internal rotation of the tibia preoperatively after
acute ACL injuries and similar rotation postoperatively, com­
pared with those in ACL-intact knees38 Significant increase
in standard deviations and variability in these studies suggest
difficulty and inconsistency in recording internal/external
and abduction/adduction rotations of the tibia during gait.
Therefore, the effects of ACL reconstruction for restoring
preinjury 6 DOF during gait are not fully understood.

Kinematics of Clinical
Tests in the ACL-Deficient Knee

The Lachman and pivot shift tests have long been used to
elicit abnormal knee kinematics following ACL injury but
only recently, a significant increase in lateral compartment
motion (ie, tibial internal rotation) in ACL-deficient knees
was demonstrated on MRI.8 Matsumoto had described an

abnormal internal tibial rotation during the pivot shift in
cadaveric knees using biplanar photography and located its
axis at the medial collateral ligament 32 More recently, Bull
and coworkers defined both a rotational and translational

component of the pivot shift. The reduction of the anteriorly
subluxed tibia was found to occur at 56° flexion with a tibial
external rotation of 17°39

The role of the ACL in restraining increased internal tibial
rotation has been emphasized by Kanamori and coworkers
who demonstrated increased internal tibial rotation in the

ACL-deficient knee during a simulated pivot shift test. 40 They
also went on to demonstrate that an internal tibial torque (as
applied during the pivot shift) caused greater increase in
coupled anterior tibial translation of up to 10.2 mm in the
ACL-deficient knee.41

Measurement of
Tibiofemoral Kinematics
In vitro techniques have contributed much to our current
knowledge of knee kinematics as described in the previous

Figure 2 Electromagnetictracking of the knee joint. (A)The anima­
tion of the 3-dimensional knee position. (B) Electromagnetic re­
ceiver sites of attachment. (a) Long RangeTransmitter. (b) Femoral
sensor. (c) Tibial sensor.
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Figure 3 Standing pivot-shift test assessment using the video-based
motion analysissystem.

paragraphs. Many scientists and clinicians are also interested
in examining in vivo tibiofemoral kinematics during dynamic
movements, such as gait, jumping, and running. Recent ad­
vances in in vivo techniques have led to more accurate mea­
surement of kinematics in the living knee. In vivo measure­
ment methods can largely be categorized as radiological
techniques, video-based motion analysis systems, electro­
magnetic tracking devices, and more recently, ultrasound­
based systems.42.43In the following section, we will discuss
the video-based and electromagnetic motion analysis sys­
tems, 2 commonly used systems in the sports medicine lab­
oratory.
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Video-Based Motion Analysis System
In orthopaedic and biomechanics literature, video-based mo­
tion analysis systems have been widely used to study the
tibiofemoral joint kinematics because it is noninvasive, easy
to operate, and able to assess various movements such as gait,
landing, jumping, and cutting.44-48However, because of soft­
tissue movement artifacts (mainly from skin), it has limited
applications, even in research. According to previous studies
comparing bone pin markers and skin markers, there were as
much as 10 mm of soft tissue artifacts at knee joint markers,
and 8° of associated rotational errors2S.49-SIAlthough these
artifacts may be acceptable in knee rotation in the sagittal
plane (flexion/extension), they become significant during in-

B

Figure 4 Pedaled cycling assessment using the video-based molion
analysis system. (A) Retroreflective Marker positions. (B) Stick
figure.
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ternal/external and abduction/adduction rotations because of

their limited total range of motion.49,50,52Therefore, the data
collected from a video-based motion analysis system should
be interpreted carefully.

Researchers have developed several methodologies to min­
imize errors associated with soft-tissue artifacts 53-55Andriac­

chi and colleagues have combined the "point cluster tech­
nique" (Fig. 1), in which clusters of skin markers were p1aced
on each segment, with the "interval deformation technique,"
which uses a model of skin deformation during daily activity
to minimize skin artifacts.53.56Their methodology has been
compared with a previous study using the Ilizarov external
fixation device and satisfactorily minimized the errors up to
0.25 mm in location and 0.37° in orientation57

Electromagnetic Tracking Device (ETD)
ETD has been employed by various researchers to track the
tibiofemoral kinematics both in vitro and in vivo 39,58,59This

system (Fig. 2) allows for in vivo tracking of knee kinematics
in 6 DOF simultaneously and can operate up to a radius of
0.7 mm from the transmitter, with an accuracy of :to.5 mm
in translation and :t 1° in rotation, collecting data at 100
Hz60 Another advantage of ETD is the capability to assign
any anatomical points to obtain 6 DOF data.

Although ETD can collect surface points noninvasively
with a high frequency, the main drawback lies in their poor
precision (mainly due to skin artifacts) and lack of methods
to compensate for this inaccuracy. The root mean square
(RMS) error was previously reported to be 1.5 mm or worse,
but van Ruijven and coworkers recently evaluated a method
to improve accuracy in modeling articular surfaces up to a
RMS of 0.07 to 0.18 mm30

Future Directions
Improved appreciation of knee kinematics throughout func­
tional ranges of sagittal knee motion will continue to evolve
from noninvasive in vivo studies of the living knee with
greater accuracy from newer technologies. This may lead to
revised definitions and classifications of posttraumatic knee
derangements especially in ACL injuries. The need to repro­
duce preinjury knee kinematics and rotational stability nec­
essarily demands changes in post injury rehabilitation proto­
cols and a more anatomic reproduction of the ACL during
surgical reconstruction. Attempts to achieve the latter in­
clude a more horizontally oriented femoral tunnel or double­
bundle ACL reconstruction61.62

With the evolution of surgical management of ACL inju­
ries, including anatomic reconstructions, in vivo techniques
will hopefully be available to assess and compare clinical and
functional outcomes. Although radiographic images have
promising accuracy, development of quantitative measures
of rotational stability in vivo during human movements is a
very important future step in outcome assessment. However,
a standardized accurate measurement technique, which is
functional, noninvasive, and easy to use for many subjects,
has yet to be determined. Possible in vivo clinical assessment
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tests such as the "standing pivot-shift test" (Fig. 3) or "inter­
nal pedaled cycling" (Fig. 4) may allow us to report internal/
external rotations of the tibia quantitatively and accurately.

Currently in our laboratory, dynamic instability in the
ACL-deficient knee is being measured during stationary cy­
cling using a video-based motion analysis system. This allows
simultaneous capture of hip, knee and ankle motions in 6
DOF during cycling, which has similar knee kinematics to
walking and is commonly utilized during rehabilitation after
ACL injuries and reconstruction. Comparison of secondary
internal/external rotation between the normal and ACL defi­

cient knee may provide a means for assessing dynamic rota­
tional stability.

Quantification of the pivot shift and dynamic rotational
instability on the ETD is also being evaluated for accuracy
and minimization of skin movement artifacts. Both these de­

vices may provide objective measures of rotational stability
after different treatment protocols.
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